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Abstract

We consider a crystalline solid as a system of electrons and atomic nuclei
interacting by the Coulomb interaction. The crystalline solid is regarded as a
given ordered array of atoms, each one fixed to a lattice site and free to move
about it with a small displacement in the harmonic approximation. The system
is represented by the quantum field theory of interacting electron and vector
fields which needs a renormalization. The renormalization provides phonon
spectra in explicit forms. The phonon spectra determine exactly the effective
interaction potential between electric charges which is a quasiperiodic function
of coordinates and differs essentially from the Coulomb potential. Theoretical
results are compared to experimental data of monatomic solids with the f.c.c.
crystal structures.

PACS numbers: 03.70.+k, 05.10.Cc, 11.10.Ef, 11.10.Gh, 60.40.−b, 63.20.−e,
63.20.dk, 63.20.K−, 63.70.+h, 64.60.ae, 65.40.G−

1. Introduction

The quantum field theory of crystalline solids, as presented in all text books on this subject,
e.g. [1–3], is based on the following generally accepted paradigm. The large ionic masses and
their locations in sites of a lattice entitle us to an important simplification in searching for a
solution to this dynamical many-body problem. This simplification consists in three distinct
consecutive steps. First, the small amplitudes of the ions motion allow us to consider ions
as fixed at their lattice sites in calculating the electron wavefunction. Thus the energy of the
electronic subsystem is parametrically dependent on the ion positions. Second, one assumes
that it is a good approximation to consider the electronic system and the ionic system as two
independent subsystems. This is the well-known Born–Oppenheimer approximation discussed
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in all the textbooks. From this approximation one can calculate the interaction energy between
ions. The interaction energy between ions is, of course, influenced by the given state of the
electronic subsystem. The low frequencies of the ionic motions are then determined from the
change of the interaction energy between ions in the harmonic approximation by assuming
that the electrons have the wavefunction appropriate for the instantaneous ionic configuration.
Third, the electron wavefunction is expressed in the Hartree–Fock approximation to get the
effective Hamiltonian H for this many-body system in the form [4]

H =
∑
ν,σ

(εν,σ − μ)a+
ν,σaν,σ +

∑′

k,λ

h̄ωk,λ

(
b+

k,λbk,λ +
1

2

)

+ γ

∫
d3x

∑
σ

Ψ+
σ (x)Ψσ (x)ϕ(x). (1)

Here εν,σ are eigenvalues associated with the single electron wavefunctions fν,σ (x) of the
Hartree–Fock equation, σ denotes the spin of the electron, a+

ν,σ and aν,σ are creation and
annihilation electron field operators in the electron states (ν, σ ) and μ is the chemical potential
of the electrons.

The symbol ωk,λ stands for the frequency spectrum of phonons with the wave numbers
k and the polarizations λ = ±1 for the transversal phonons and λ = 0 for the longitudinal
phonons, b+

k,λ and bk,λ are the creation and annihilation operators of the phonons in the states
(k, λ). The field operators Ψ+

σ (x),Ψσ (x) and ϕ(x) are defined by the formulae

Ψ+
σ (x) =

∑
ν

fν,σ (x)a+
ν,σ , Ψσ (x) =

∑
ν

fν,σ (x)aν,σ ,

ϕ(x) =
∑

k

(
h̄ωk,0

2V

)1/2(
bk,0 eik·x + b+

k,0 e−ik·x) (2)

and γ is the electron–phonon coupling constant.
The first two terms in the Hamiltonian (1) are considered as unperturbed Hamiltonian H0

and effects of the third term in (1) are treated perturbatively.
All the parameters, as the electron energies εν,σ , single electron wavefunctions fν,σ (x),

phonon spectra ωk,λ, densities of phonon states gω and the electron–phonon coupling constant
γ, entering the Hamiltonian (1) are, in principle, calculable from the first principles of quantum
mechanics, but not in practical calculations. To the best of our knowledge, there is not
even one known example, where all these characteristic parameters have been calculated
systematically for a given crystalline solid in the lines of the paradigm explained above and
compared to existing experimental data. In practical calculations one takes these parameters
on a quasi-phenomenological basis with additional simplifying assumptions. This treatment
has been very successful in qualitative explanations of almost all phenomena in insulators,
metals, semiconductors [5, 6] and low-temperature superconductivity [7]. This success with
the phenomenological parameters εν,σ , ωk,λ and γ in H without their mutual interrelations
can be easily understood.

The reason for this is in the fact that the Hamiltonian (1), with suitably chosen parameters
εν,σ , fν,σ (x) and ωk,λ, represents the most general form of H which can be derived for any
crystalline solid in the harmonic approximation. No other form seems to be conceivable.

The aim of this paper is to derive the effective Hamiltonian of the type (1) for a genuine
crystalline solid with one atom per a given primitive cell in the harmonic approximation
without any other approximations. The derivation is made on the basis of the first principles
of quantum field theory and statistical mechanics. In this approach the spectra of phonons
ωk,λ and the densities of phonon states gω are explicitly calculated. The phonon spectra ωk,λ
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modify the Coulomb potential essentially and give rise to the effective potential U(x − x′)
between charges in the exact, explicit and rather simple form. The explicitly known effective
potential U(x − x′) permits one to make the Hartree–Fock approximation in calculating the
single electron energies εν,σ and eigenfunction fν,σ (x) from the Hartree–Fock equations.
From this approach the chain of approximations discussed in the beginning of section 1 and
leading to the effective Hamiltonian (1) will appear as a general frame or a manual how to
calculate the parameters εν,σ , fν,σ (x), ωk,λ and γ approximatively and implicitly within the
framework of quantum mechanics, despite the fact that they can be calculated exactly and
explicitly within the framework of quantum field theory and statistical mechanics.

For the sake of simplicity, we apply the mentioned method to crystalline solids with the
f.c.c. crystal lattice in which the velocity of sound waves is isotropic. The crystal lattice
of aluminum meets this conditions [2]. We compare the theoretical results with existing
experimental data for almost all metals which have the f.c.c. lattice.

2. Ab initio form of the Hamiltonian of a crystalline solid

We start by considering a system of N atomic nuclei with the charge Ze, mass M and of n
electrons interacting by the Coulomb interaction in the same way as quantum chemists treat
many atomic molecules [8]. The quantum-mechanical Hamiltonian of this system has the
form

H = −
n∑

j=1

h̄2

2m

∂2

∂x2
j

−
N∑

α=1

h̄2

2M

∂2

∂X2
α

+
1

2

∫
d3x d3x′

|x − x′| ρ̃(x)ρ̃(x′), (3)

where

ρ̃(x) = −e

n∑
j=1

δ(x − xj ) + Ze

N∑
α=1

δ(x − Xα) (4)

is the operator of the charge density. This quantum-mechanical system has the finite number
of degrees of freedom f = 3n + 3N. The crystalline solid may be viewed as an ordered array
of atoms, each one fixed to a lattice site Rα and free to move about the lattice site with a small
displacement uα, i.e.,

Xα = Rα + uα, (5)

where Rα is a lattice vector of a given crystal lattice with one atom per its primitive cell. Next,
we make the harmonic approximation to the Hamiltonian (3). The harmonic approximation
is the only approximation we are going to make in this paper.

In the harmonic approximation the charge density operator (4) gets the form

ρ̃(x) = ρ(x) − Ze

N∑
α=1

uα · ∇δ(x − Rα), (6)

where

ρ(x) = −e

n∑
j=1

δ(x − xj ) + Ze

N∑
α=1

δ(x − Rα) (7)

is the charge density of the electrons and atomic nuclei localized at the lattice sides Rα. In the
harmonic approximation the Hamiltonian (3) consists of three terms,

H = H0,e + H0,i + HI , (8)

3
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where

H0,e = −
n∑

j=1

h̄2

2m

∂2

∂x2
j

+
1

2

∫
d3x d3x′

|x − x′| ρ(x)ρ(x′), (9)

H0,i = −
N∑

α=1

h̄2

2M

∂2

∂u2
α

+
(Ze)2

2

∑′

α �=β

∫
d3x d3x′

|x − x′|
× [(uα · ∇)δ(x − Rα)][(uβ · ∇′)δ(x′ − Rβ)], (10)

HI = −Ze

∫
d3x d3x′

|x − x′| ρ(x′)
N∑

α=1

(uα · ∇)δ(x − Rα). (11)

One may say that H0,e is the Hamiltonian of the electronic subsystem in the Born–
Oppenheimer approximation, H0,i represents the Hamiltonian of the ionic subsytem and
HI is the interaction Hamiltonian.

In what follows, we describe the crystalline solid governed by the Hamiltonian (8)–(11)
by methods of the second quantization, i.e., by the quantum field theory.

In order to do it we use the δ-function representation

δ(x − Rα) = 1

V

∑
k

eik·(x−Rα)

to define the field π(x) of the ion momenta by the formula

π(x) = −ih̄

√
V

MN

N∑
α=1

δ(x − Rα)
∂

∂uα

(12)

and the field u(x) of the displacements by the relation

u(x) =
√

MV

N

N∑
α=1

uαδ(x − Rα), (13)

where V is the volume of the crystal and k are wave vectors in the space of the inverse lattice.
The field operators π(x) and u(x) satisfy the canonical commutation relations

[πj ′(x′),uj (x)] = −ih̄δjj ′δ(x − x′)

which follow directly from definitions (12) and (13).
The electron field operators Ψ+

σ (x) and Ψσ (x) satisfy the canonical anticommutation
relations {

Ψ+
σ ′(x′),Ψσ (x)

} = δσσ ′δ(x − x′),

where σ = +,− denotes the spin of the electron.
The quantum field operators are used to express the total charge density operator ρ̃(x) in

the form

ρ̃(x) = ρ(x) − ωp√
4π

∇ · u(x)

with

ρ(x) = −e
∑

σ

Ψ+
σ (x)Ψσ (x) + Ze

N∑
α=1

δ(x − Rα) (14)

as the operator of the charge density of the electrons and localized ions, where ωp is the plasma
frequency of the atomic nuclei defined by
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ω2
p = 4π(Ze)2

M

N

V
. (15)

The grand-canonical Hamiltonian of the system under consideration is again the sum of three
terms

H = H0,e + H0,i + HI , (16)

where

H0,e =
∑

σ

∫
d3xΨ+

σ (x)

[
− h̄2

2m

 − μ

]
Ψσ (x) +

1

2

∫
d3x d3x′

|x − x′| :ρ(x)ρ(x′) : (17)

H0,i = 1

2

∫
d3x π2(x) +

1

2

ω2
p

4π

∫
d3x d3x′

|x − x′| (∇ · u(x))(∇′ · u(x′)), (18)

HI = − ωp√
4π

∫
d3x d3x′

|x − x′| ρ(x′)∇ · u(x). (19)

In relation (17), μ is the chemical potential of the electrons and the symbol :ρ(x)ρ(x′) : stands
for the normal product ordering of the electron field operators entering the product ρ(x)ρ(x′).

The Hamiltonian (16)–(19) represents the quantum field theory describing the interacting
system of the electron fields Ψ+

σ (x),Ψσ (x) with the real vector field u(x), i.e., a system
with infinitely many degrees of freedom in contradistinction to the quantum-mechanical
Hamiltonian (8)–(11) which governs the system with the finite number of degrees of freedom.
In order to respect the finite number of degrees freedom in the quantum field theory one
introduces the chemical potential μ of the electrons in (17) and the ‘phonon’ representation
for the fields π(x) and u(x). For this reason we make the expansion of π(x) and u(x) into
the polarized plane waves,

π(x) =
∑′

k,λ

(
h̄ωk

2V

)1/2[
εk,λbk,λ eik·x + ε∗

k,λb
+
k,λ e−ik·x]

(20)

u(x) = i
∑′

k,λ

(
h̄

2ωkV

)1/2[
εk,λbk,λ eik·x − ε∗

k,λb
+
k,λ e−ik·x]

, (21)

where

h̄ωk = h̄2k2

2M
(22)

is the kinetic energy of the atomic nucleus with the momentum h̄k and λ = ±1, 0 denotes the
three different polarizations of the plane waves. The complex polarization vectors εk,λ and
ε∗

k,λ satisfy the conditions

ε∗
k,λ · εk,λ′ = δλλ′ , (23a)∑
λ

ε
∗j

k,λε
l
k,λ = δjl, (23b)

ε∗
−k,λ = εk,λ (23c)

of the orthogonality, completeness and the reality of the fields π(x) and u(x) respectively. If
we identify

εk,0 ≡ i
k

|k|
5
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Figure 1. The first Brillouin zone of f.c.c. lattice in k-space.

then λ = 0 corresponds to the longitudinal plane waves and λ = ±1 corresponds to two
transversal plane waves. The operators b+

k,λ and bk,λ are the creation and annihilation operators
of the phonons in the states (k, λ). These operators satisfy the canonical commutation relations[

bk,λ, b
+
k′,λ′

] = δλ,λ′δk,k′ . (24)

In order to respect the finite number of degrees of freedom 3N of the atomic nuclei one
requires the number of the phonon states (k, λ) to be equal to 3N, i.e.

3N =
∑

λ=0,±1

∑′

k

1 = 3
∑′

k

1 = 3V

(2π)3

∫
d3k. (25)

Thus the wave vectors k of phonons are restricted to the Brillouin zone of the inverse crystal
lattice. As an example, in figure 1, we have depicted the Brillouin zone corresponding to the
f.c.c. crystal lattice. We denote the domain of the k-space corresponding to the Brillouin zone
by B. Thus the sums over k (20) and (21) are restricted to k ∈ B what is indicated by the
prime at the summation symbols in (20) and (21).

Next we insert formulae (20) and (21) into (16)–(19) to get the Hamiltonian respecting
the finite number of degrees of freedom of the system under consideration in the form

H = H0,e + H0,ph + Hc,ph, (26)

where

H0,e =
∑

σ

∫
d3xΨ+

σ (x)

[
− h̄2

2m

 − μ

]
Ψσ (x) +

1

2

∫
d3x d3x′

|x − x′| :ρ(x)ρ(x′) :, (27)

H0,ph = H0,i =
∑′

k

∑
λ=±1

h̄ωk

4

(
b+

k,λbk,λ + bk,λb
+
k,λ + b+

−k,λb
+
k,λ + b−k,λbk,λ

)

+
h̄

4

∑′

k

{(
ωk +

ω2
p

ωk

)(
b+

k,0bk,0 + bk,0b
+
k,0

)

+

(
ωk − ω2

p

ωk

)(
b+

−k,0b
+
k,0 + b−k,0bk,0

)}
, (28)

6
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Hc,ph = HI = iωp√
4π

∫
d3x d3x′

|x − x′| ρ(x′)
∑′

k

(
h̄

2ωkV

)1/2

|k|(bk,0 eik·x − b+
k,0 e−ik·x)

(29)

describes the interaction of the phonons with the electrons and localized atomic nuclei.
Despite the fact that the Hamiltonian (26)–(29) respects the finite number of degrees

of freedom of the system under consideration, it generates qualitatively new phenomena in
the thermodynamic limit V −→ ∞, N −→ ∞ and N

V
= constant which one does not

encounter in quantum mechanics. In the thermodynamic limit, the number of the creation
and annihilation operators b+

k,λ and bk,λ resp. becomes infinite. In this case the canonical
commutation relations (24) have infinitely many unitary inequivalent representations as was
first pointed by von Neumann [9] and later by Haag [10]. The existence of the infinitely many
unitarily inequivalent representations for b+

k,λ and bk,λ in the thermodynamic limit implies the
existence of infinitely many macrostates of the system governed by the Hamiltonian (26)–(29)
as will be explained below.

All thermodynamical properties of the system governed by the Hamiltonian H are given
by the grand canonical partition function

Z = Tr e−βH , (30)

grand-canonical potential Ω,

Ω = −kBT ln Z (31)

and by the statistical averages of physical observables F(Ψ+,Ψ, b+, b) as defined by the
formula

〈F 〉 = 1

Z
Tr{F(Ψ+,Ψ, b+, b) e−βH}, (32)

where β = (kBT )−1 is proportional to the inverse temperature T and kB is the Boltzmann
constant.

Intuitively speaking one may regard the Hamiltonian H as an infinite matrix which is
distinct for each particular unitarily inequivalent representation of the operators b+

k,λ and bk,λ.

Thus the physical quantities (30)–(32) which specify the macrostate of the system are distinct
for each particular unitarily inequivalent representation of the field operators b+

k,λ and bk,λ.

In this sense the distinct unitarily inequivalent representations of the field operators are very
important, because they are connected with the appearance of distinct macrostates—phases of
the physical system [11, 12]. The macrostate of the phonon subsystem corresponding to its
thermodynamic equilibrium must be selected out of infinitely many macrostates by applying
the second law of thermodynamics. Namely, one calculates the statistical weight W as the
number of the microstates generating the given macrostate determined by relations (30)–(32).
To each macrostate one may find the Boltzmann entropy SB as defined by

SB = kB ln W. (33)

The Boltzmann entropy can be defined for every macrostate, even for those which are far away
from the thermodynamic equilibrium. Thus, the single unitarily inequivalent representation
of the field operators b+

k,λ and bk,λ corresponding to the thermodynamic equilibrium of the
phonon subsystem is determined by selecting that one which gives the maximal value for the
Boltzmann entropy (33).

The purpose of this section was mainly to introduce the notations and to give theoretical
arguments that characteristics of crystalline solids like phonon spectra, densities of phonon
states and their relations with the effective interaction potential between electrons cannot,
probably, be completely determined without statistical mechanics.

7



J. Phys. A: Math. Theor. 42 (2009) 365001 A Teleki and M Noga

3. The renormalization, phonon spectra and the effective interaction potential between

electric charges

In this section, we calculate the partition function

Z = Tr e−βH (34)

with the Hamiltonian (26)–(29). The most effective way how to do it explicitly is to use the
functional integral methods [13–15]. According to the general rules one replaces quantum
field operators by anticommuting or commuting variables,

Ψσ (x) → �σ(x, τ ), Ψ+
σ (x) → �∗

σ (x, τ ), (35a)

bk,λ → b∗
k,λ(τ ), bk,λ → bk,λ(τ ), (35b)

which are enumerated by the additional continuous parameter τ.

The Grassmann variables �σ(x, τ ) and �∗
σ (x, τ ) satisfy the antiperiodic conditions

�σ(x, τ + 1) = −�σ(x, τ ), �∗
σ (x, τ + 1) = −�∗

σ (x, τ )

and the commuting variables bk,λ(τ ) and b∗
k,λ(τ ) satisfy the periodic conditions

bk,λ(τ + 1) = bk,λ(τ ), b∗
k,λ(τ + 1) = b∗

k,λ(τ ).

Operators like the Hamiltonians (26)–(29) are expressed in the normal forms and then the
creation and annihilation operators are replaced by the anticommuting or commuting variables
according to the relations (35). Thus one gets the normal symbols of the Hamiltonian (26)–
(29) as functions of the anticommuting �σ(x, τ ),�∗

σ (x, τ ) and commuting bk,λ(τ ), b∗
k,λ(τ )

variables. Next, one defines the action functional S (�∗, �; b∗, b),

S (�∗, �; b∗, b) =
∫ 1

0
dτ

{ ∑
σ

∫
d3x �∗

σ (x, τ )
∂

∂τ
�σ (x, τ )

+
∑′

k,λ

b∗
k,λ(τ )

∂

∂τ
bk,λ(τ ) + βH(�∗, �; b∗, b)

}
, (36)

where H(�∗, �; b∗, b) is the normal symbol of the Hamiltonian (26)–(29). The explicit form
of S (�∗, �; b∗, b) corresponding to the Hamiltonian (26)–(29) is given by the formula

S (�∗, � ; b∗, b) =
∫ 1

0
dτ

{ ∑
σ

∫
d3x �∗

σ (x, τ )

[
∂

∂τ
− β

(
h̄2

2m

 + μ

)]
�σ(x, τ )

+
β

2

∫
d3x d3x′

|x − x′| ρ(x, τ )ρ(x′, τ )

}
+

βh̄

4

∑′

k

(
3ωk +

ω2
p

ωk

)

+
∫ 1

0
dτ

∑′

k,λ

b∗
k,λ(τ )

∂

∂τ
bk,λ(τ ) +

βh̄

4

∫ 1

0
dτ

∑
λ=±1

∑′

k

ωk

× [2b∗
k,λ(τ )bk,λ(τ ) + b∗

−k,λ(τ )b∗
k,λ(τ ) + b−k,λ(τ )bk,λ(τ )]

+
βh̄

4

∫ 1

0
dτ

∑′

k

{
2

(
ωk +

ω2
p

ωk

)
b∗

k,0(τ )bk,0(τ )

+

(
ωk − ω2

p

ωk

)(
b∗

−k,0(τ )b∗
k,0(τ ) + b−k,0(τ )b∗

k,0(τ )
)}

+ i
βωp√

4π

∫ 1

0
dτ

∫
d3x d3x′

|x − x′| ρ(x′, τ )
∑′

k

(
h̄

2ωkV

)1/2

× |k|(bk,0(τ ) eik·x − b∗
k,0(τ ) e−ik·x). (37)

8
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With this notation the partition function (34) is given by the functional integral

Z =
∫

D(�∗, � ; b∗, b) e−S (�∗,� ;b∗,b) (38)

where D(�∗, � ; b∗, b) denotes the measure of the functional integration.
The functional integral (38) with the action functional (37) is divergent, i.e., it is not

integrable. For its meaningful integration one has to adopt a renormalization procedure
known in quantum field theories [16, 17]. In order to get the finite result for the partition
function (38) we start by exploiting the following identity:

Z =
∫

D(�∗, � ; b∗, b) e−S (�∗,� ;b∗,b)−�(b∗,b)+�(b∗,b)

= 〈e�(b∗,b)〉
∫

D(�∗, � ; b∗, b) e−S (�∗,� ;b∗,b)−�(b∗,b)

= Zr〈e�(b∗,b)〉,
where �(b∗, b) is a suitably chosen functional of the phonon fields b∗

k,λ(τ ) and bk,λ(τ ) for
which the functional integrals

Zr =
∫

D(�∗, � ; b∗, b) e−S̃ (�∗,� ;b∗,b), (39)

〈e�(b∗,b)〉 = 1

Zr

∫
D(�∗, � ; b∗, b) e−S̃ (�∗,� ;b∗,b)+�(b∗,b) (40)

corresponding to the action functional

S̃ (�∗, � ; b∗, b) = S (�∗, � ; b∗, b) + �(b∗, b) (41)

are integrable with finite results. The functional �(b∗, b) plays a role of counterterms in a
renormalization procedure in quantum field theories as in [16, 17]. In the next step we require
the functional �(b∗, b) to satisfy the following relations:

〈e�(b∗,b)〉 = 〈
e(1−�2)�(b∗,b)

〉 = 1 (42)

exactly for any value of the parameter �2 for which the mean value
〈
e(1−�2)�(b∗,b)

〉
is integrable.

If relations (42) are exactly satisfied then the partition function Zr given by formula (39)
corresponding to the action (41) is a finite number and is equal to the partition function Z
given by relation (38) which was originally infinite. This may seem to be a paradox one meets
in all quantum field theories which need renormalizations, where one generates finite results
out of infinite ones. That is why the mathematicians Kobzarev and Manin [18] have expressed
the following statement about (38)–(41): ‘From a mathematicians’s viewpoint almost every
such computation is, in fact, a half baked and ad hoc definition but a readiness to work
heuristically with such a priori undefined expressions as (38) is a must in this domain’.

The selection of the functional �(b∗, b) is not unique, thus the different functional
�(b∗, b) correspond to different renormalization schemes which can be associated
with different unitarily inequivalent representations of the field operators b+

k,λ and bk,λ

[9, 10, 19].
There is, of course, a temptation to believe that relations (42) cannot be satisfied exactly

except for �(b∗, b) equal identically to zero. We show explicitly that the special choice for
�(b∗, b) corresponds to macrostates of crystalline solids quite correctly. For this reason we

9
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consider the functional �(b∗, b) in the form

�(b∗, b) = β

2

{
y2

ω2
p

k2
0

∫
d3x(∇ × u)2 − z2

k4
0

∫
d3x

[
[∇(∇ · π)]2 + ω2

p[∇(∇ · u)]2]}

− β

2
ξ 2

{ ∫
d3x[π(x)]2 +

ω2
p

4π

∫
d3x d3x′

|x − x′| [∇ · u(x)][∇′ · u(x′)]

}
, (43)

where k0 is the maximal value of |k| for k ∈ B and the free parameters y, z and ξ are to
be determined from relations (42). The functional �(b∗, b) is used in (41) to get the action
S̃ (�∗, � ; b∗, b) in the form

S̃ (�∗, � ; b∗, b) =
∫ 1

0
dτ

{ ∫
d3x

∑
σ

�∗
σ (x, τ )

[
∂

∂τ
− β

(
h̄2

2m

 + μ

)]
�σ(x, τ )

+
β

2

∫
d3x d3x′

|x − x′| ρ(x, τ )ρ(x′, τ )

}
+

βh̄

4

∑′

k

{
(1 − ξ 2)

(
3ωk +

ω2
p

ωk

)

+ 2y2
ω2

p

ω0
− z2

ω2
0

(
ω3

k + ω2
pωk

)}
+

∫ 1

0
dτ

∑
λ

∑′

k

b∗
k,λ(τ )

∂

∂τ
bk,λ(τ )

+
βh̄

4

∫ 1

0
dτ

∑
λ=±1

∑′

k

{
2

[
(1 − ξ 2)ωk + y2

ω2
p

ω0

]
b∗

k,λ(τ )bk,λ(τ )

+

[
(1 − ξ 2)ωk − y2

ω2
p

ω0

]
[bk,λ(τ )b−k,λ(τ ) + b∗

k,λ(τ )b∗
−k,λ(τ )]

}

+
βh̄

4

∫ 1

0
dτ

∑′

k

{
2

[
(1 − ξ 2)

(
ωk +

ω2
p

ωk

)
− z2

ω2
0

(
ω3

k + ω2
pωk

)]
b∗

k,0(τ )bk,0(τ )

+

[
(1 − ξ 2)

(
ωk − ω2

p

ωk

)
− z2

ω2
0

(
ω3

k − ω2
pωk

)]

× [bk,0(τ )b−k,0(τ ) + b∗
k,0(τ )b∗

−k,0(τ )] + i
βωp√

4π

∫ 1

0
dτ

∫
d3x d3x′

|x − x′| ρ(x′, τ )

×
∑′

k

(
h̄

2ωkV

)1/2

|k|
[
bk,0(τ ) eik·x − b∗

k,0(τ ) e−ik·x
]}

, (44)

where ω0 = h̄k2
0

2M
. As one can see, the phonon part of the action S̃ (�∗, � ; b∗, b) is very ugly

and untransparent. In order to simplify its notation we make substitutions for the integration
variables bk,λ(τ ) and b∗

k,λ(τ ) in the functional integral (39). These substitutions are the
Bogoliubov–Valatin transformations [20, 21]

bk,λ(τ ) = cosh vk,λck,λ(τ ) + sinh vk,λc
∗
−k,λ(τ ), (45a)

b∗
k,λ(τ ) = cosh vk,λc

∗
k,λ(τ ) + sinh vk,λc−k,λ(τ ), (45b)

where vk,λ are parameters of the transformations to the new integration variables ck,λ(τ ) and
c∗
k,λ(τ ). We choose these parameters as given by the relations

cosh2 vk,±1 = 1

2

{
1

2ωk,±1

[
(1 − ξ 2)ωk + y2

ω2
p

ω0

]
+ 1

}
,

10
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cosh2 vk,0 = 1

2

{
1

2ωk,0

[
(1 − ξ 2)

(
ωk +

ω2
p

ωk

)
− z2

ω2
0

(
ω3

k + ω2
pωk

)]
+ 1

}

where

ωk,±1 =
√

1 − ξ 2ωpy
k

k0
(46)

and

ωk,0 = ωp

[
1 − ξ 2 − z2

(
k

k0

)4]
. (47)

By the substitutions (45) the action functional S̃ (�∗, � ; c∗, c) gets the simple form

S̃ (�∗, � ; c∗, c) =
∫ 1

0
dτ

{ ∫
d3x

∑
σ

�∗
σ (x, τ )

[
∂

∂τ
− β

(
h̄2

2m

 + μ

)
�σ(x, τ )

+
β

2

∫
d3x d3x′

|x − x′| ρ(x, τ )ρ(x′, τ )

]}
+

βh̄

2

∑
λ=±1,0

∑′

k

ωk,λ

+
∫ 1

0
dτ

∑
λ=±1,0

∑′

k

c∗
k,λ(τ )

[
∂

∂τ
+ βh̄ωk,λ

]
ck,λ(τ )

+ iβωp

√
4π

∑′

k

(
h̄

2ωkV

)1/2 e−vk,0

|k| [ρ−k(τ )ck,0(τ ) − ρk(τ )c∗
k,0(τ )], (48)

where

ρk(τ ) =
∫

d3x e−ik·x
[
Ze

∑
α

δ(x − Rα) − e
∑

σ

�∗
σ (x, τ )�σ (x, τ )

]

is the Fourier transform of the normal symbol ρ(x, τ ) of the charge density operator (14).
As one sees, the action functional (48) is a bilinear functional of the integration variables

c∗
k,λ(τ ) and ck,λ(τ ). The functional integral

Zr =
∫

D(�∗, � ; c∗, c) e−S̃ (�∗,� ;c∗,c) (49)

is a Gaussian integral with respect to the variables c∗
k,λ(τ ) and ck,λ(τ ) and therefore can be

exactly and explicitly integrated with the result

Zr = Z0,ph

∫
D(�∗, �) eSc(�

∗,� ) ≡ Z0,phZc. (50)

Here Z0,ph is the partition function of the phonons,

Z0,ph =
∏

λ=±1,0

∏′

k

[
2 sinh

(
1

2
βh̄ωk,λ

)]−1

, (51)

where ωk,λ are the spectra of the transversal λ = ±1 and longitudinal λ = 0 phonons which
are given by formulae (46) and (47), respectively. Zc is the partition function corresponding
to the electrons and the localized atomic nuclei expressed by the functional integral

Zc =
∫

D(�∗, �) e−Sc(�
∗,� ) (52)

11
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over anticommuting variables �∗
σ (x, τ ) and �σ(x, τ ). The effective action functional

Sc(�
∗, �) entering (52) is expressed by the exact formula

Sc(�
∗, �) =

∫ 1

0
dτ

∑
σ

∫
d3x �∗

σ (x, τ )

[
∂

∂τ
− β

(
h̄2

2m

 + μ

)]
�σ(x, τ )

+
β

2

∫ 1

0
dτ

∫ 1

0
dτ ′

∫
d3x d3x′U(x − x′; τ − τ ′)ρ(x, τ )ρ(x′, τ ′), (53)

where U(x − x′, τ − τ ′) is the effective interaction potential between electrons and localized
atomic nuclei. It is expressed by its Fourier transform uk(τ − τ ′) as given by

U(x − x′, τ − τ ′) = 1

V

∑
k

uk(τ − τ ′) eik·(x−x′), (54)

where

uk(τ − τ ′) = 4π

k2

[
δ(τ − τ ′) − ωp

ωk,0
Gk(τ − τ ′)

]
. (55)

The symbol Gk(τ −τ ′) stands for the temperature Green’s function of the longitudinal phonons
as defined by the relations

Gk(τ − τ ′) = βh̄ωp

(
∂

∂τ
+ βh̄ωk,0

)−1

δ(τ − τ ′) if k ∈ B (56a)

and

Gk(τ − τ ′) = 0 if k /∈ B. (56b)

The δ(τ − τ ′)-function in (56a) has the spectral representation

δ(τ − τ ′) =
∞∑

ν=−∞
e−i2πν(τ−τ ′),

where ν are integers. In this representation the temperature Green’s function (56a) has the
explicit form

Gk(τ − τ ′) = βh̄ωp

+∞∑
ν=−∞

e−i2πν(τ−τ ′)

−i2πν + βh̄ωk,0
if k ∈ B. (57)

The partition function Zr of the crystalline solid under consideration as given by (50) shows
that the subsystems of the phonons and electrons are exactly statistically independent. The
longitudinal phonons, however, modify the original Coulomb interaction between charges very
significantly and lead to the effective potential U(x−x′; τ −τ ′) as is given by formulae (54)–
(57). Note that if �(b∗, b) were zero then Z0,ph would become infinite, i.e., the functional
integral (38) would not be integrable.

The partition function (50) is dependent on the ordinary thermodynamical variables like
the temperature T , volume V and the chemical potential μ of the electrons. In addition to
the variables T , V,μ it depends also on the parameters y, z and ξ entering the phonon spectra
(46), (47) and the effective potential U(x − x′; τ − τ ′). Thus

Zr = Zr(y, z, ξ), (58)

where we have suppressed the dependence of Zr on the variables T , V,μ. In the same way,
the grand canonical potential

� = −kBT ln Zr = �(y, z, ξ) (59)

12
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is also dependent on these free parameters. These parameters must be chosen in such a way
as to satisfy relations (42). We calculate exactly the statistical average value

〈
e(1−�2)�(b∗,b)

〉
with the result 〈

e(1−�2)�(b∗,b)
〉 = Zr(�y,�z,�ξ)

Zr(y, z, ξ)
= 1. (60)

The last equations implies the relations

Zr(�y,�z,�ξ) = Zr(y, z, ξ), (61a)

�(�y,�z,�ξ) = �(y, z, ξ) (61b)

telling us that both Z (y, z, ξ) and �(y, z, ξ) are homogeneous functions of the zero order of
the variables z, y and ξ. Thus the grand canonical potential � must satisfy the Euler equation

y
∂�

∂y
+ z

∂�

∂z
+ ξ

∂�

∂ξ
= 0 (62)

which is, in fact, the renormalization group equation in the Lie form [17] for the chosen
renormalization scheme with the counterterms represented by the functional �(b∗, b). The
renormalization group equation (62) tells us that only two out of three parameters y, z, ξ

entering the counterterms (43) are independent parameters. Thus we get the quantum
field theory of crystalline solids with two free parameters. However, the second law of
thermodynamics, represented by the maximum of the Boltzmann entropy of the phonons,
determines together with the renormalization group equation (62) the free parameters y, z, ξ

uniquely as certain numbers.
For this reason we study general properties of the phonon spectra ωk,λ given by formulae

(46) and (47). For the shorthand notation we introduce the following abbreviations:

ωm ≡ ωp(1 − ξ 2), (63a)

η ≡ y√
1 − ξ 2

> 0, (63b)

ζ ≡ z√
1 − ξ 2

� 1, (63c)

where ωm is the maximal frequency of the phonon spectrum. With this notation we express
the phonon spectra in the forms

ωk,±1 = ωmη
k

k0
≡ vtrk (64)

and

ωk,0 = ωm

[
1 − ζ 2

(
k

k0

)4]
. (65)

Here vtr = ωmη/k0 is the velocity of the sound corresponding to the transversal waves which
is isotropic in all directions. One would intuitively expect the form (64) for the spectrum of
the transversal phonons. However, the form (65) for the spectrum of the longitudinal phonons
is a novel one and completely unexpected on an intuitive ground.

From the known phonon spectra (64) and (65) we can calculate the density gω,λ of the
phonon states from the formula

gω,λ =
∑′

k

δ(ω − ωk,λ) = V

(2π)3

∫
d3k δ(ω − ωk,λ)

= V

(2π)3
S(k)

∣∣∣∣ dk

dωk,λ

∣∣∣∣, (66)

13
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where S(k) denotes the size area of the sphere with the radius k = k(ωλ) which is inside of a
given Brillouin zone B. Thus the form of gω,λ depends in details on a given crystal lattice. If
one approximates the Brillouin zone B by the ball of the radius kD in the Debye approximation
then he gets

gω,±1 = V

2π2

k3
D

ωm

1

η3
x2θ(η − x), (67a)

gω,0 = V

2π2

k3
D

ωm

1

4ζ 3/2

1

(1 − x)1/4
θ [x − (1 − ζ 2)]θ(1 − x),

x ≡ ω

ωm

.

(67b)

In this approximation k0 is approximated by the Debye wave number

kD =
(

6π2 N

V

)1/3

. (68)

We, however, emphasize that the Debye approximation (67) is not always admissible because
it can lead to spurious results in some cases which will be seen below. That is why one has to
consider the proper Brillouin zones.

Macrostates of the phonon subsystem are specified by given sets {nω,λ} of the phonon
occupation numbers nω,λ. To each macrostate of the phonons one calculates its statistical
weight

W =
∏
ω,λ

(gω,λ − 1 + nω,λ)!

(gω,λ − 1)!nω,λ!
(69)

and the corresponding Boltzmann entropy

SB = kB ln W.

In formula (69) one considers a discretized spectrum ωλ of the frequencies for each polarization
λ and gω,λ denotes the number of the phonon states with the frequency ω and the polarization λ.

For gω,λ 
 1 and for the macrostates nω,λ 
 1 the Boltzmann entropy SB becomes maximal
if the size D of the domain of ω in which gω,λ > 0 is maximal, i.e.

D =
∑

λ

∫
dω θ(gω,λ) = ωm(2η + ζ 2) (70)

must be maximal under the constrain given by the renormalization group equation (62). Thus,
the maximum of the entropy of phonons and the renormalization group equation determine the
numerical values of the parameters z, y and ξ uniquely. Note that the macrostate of phonons
for y = z = ξ = 0, i.e., ωk,±1 = 0, ωk,0 = ωp has the Boltzmann entropy as minimal as
possible and therefore this macrostate is highly improbable. From relations (63) and (70) one
can intuitively expect the value ζ ≈ 1. The explicit calculation of the parameters η, ζ and ξ

will be carried out for the f.c.c. lattice in the following section.
At the end of this section we study general properties of the effective interaction potential

U(x − x′; τ − τ ′) between charges as given by relations (54)–(57) in the limit T → 0. In this
limit the temperature Green’s function Gk(τ − τ ′) given by (56) and (57) reduces to the form

Gk(τ − τ ′) = ωp

ωk,0
δ(τ − τ ′), k ∈ B,

Gk(τ − τ ′) = 0, k /∈ B.
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The effective action functional Sc(�
∗, �) given by (53) gets the form

Sc(�
∗, �) =

∫ 1

0
dτ

{ ∑
σ

∫
d3x �∗

σ (x, τ )

[
∂

∂τ
− β

(
h̄2

2m

 + μ

)]
�σ(x, τ )

+
β

2

∫
d3x d3x′U(x − x′)ρ(x, τ )ρ(x′, τ )

}
. (71)

Here U(x − x′) is the effective interaction potential between charges which is independent of
the variable τ and is given by the relations

U(x − x′) = 1

V

∑
k

uk eik·(x−x′), (72)

uk = 4π

k2

(
1 − ω2

p

ω2
k,0

)
, k ∈ B, (73a)

uk = 4π

k2 , k /∈ B. (73b)

The effective action (71) corresponds to the effective Hamiltonian Hc(Ψ+,Ψ) in the operator
form

Hc(Ψ+,Ψ) =
∑

σ

∫
d3xΨ+

σ (x)

[
− h̄2

2m

 − μ

]
Ψσ (x)

+
1

2

∫
d3x d3x′U(x − x′) :ρ(x)ρ(x′) : (74)

where ρ(x) is the charge density operator for the electrons and the localized atomic nuclei
given by (14). Thus we have derived the exact form of the effective interaction potential U(r)

between electric charges due to phonons which is essentially different from the Coulomb
potential V (r) = 1/r. For k0r � 1, U(r) > 0 and corresponds to a repulsive interaction
between electrons. However for k0r � π, if ωp > ωk,0, U(r) < 0 and behaves as a
quasioscillating function of r with period λ ≈ 2π/k0 and giving rise to an attractive interaction
between electrons.

As a concrete example we discuss properties of U(r) explicitly for ωk,0 given by relation
(65) with ζ = 1. In this case, we get the result

U(r) = 1

r
− 1

(2π)3

4π

(1 − ξ 2)2

∫
(B)

d3k

k2

eik·r[
1 − (

k
k0

)4]2 (75)

which can be approximated by the formula

U(r) = 1

r
− 1

2π2r

k2
0

(1 − ξ 2)2

∫ k0

0

dk

k2

s(k/k0)[
1 − (

k
k0

)4]2

sin kr

k
. (76)

Here k2
0s(k/k0) is the size area of the sphere of the radius k which is inside of a given Brillouin

zone B. If the Brillouin zone B is approximated by the ball of the radius k0 in the Debye
approximation then the integral (76) is divergent. Thus the Debye approximation for some
cases can lead to spurious results. In the following section, we make the explicit calculation of
k2

0s(k/k0) for the f.c.c. crystal lattice. However one can convince himself that for the simple
cubic, f.c.c. and b.c.c. lattices the function

k2
0s(k/k0)

k2

1[
1 − (

k
k0

)4]2 ≡ s(w)

w2

1

(1 − w4)2
, w ≡ k

k0
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Figure 2. The plot of 1/(k0r) (thick solid line) and the plot of ϕ(r)/k0 (thin solid line) as the
functions of the variable k0r.

is a perfectly integrable function on the interval w ∈ 〈0, 1〉 and permits U(r) to be expressed
by the formula

U(r) = 1

r
− 1

2π2r

1

(1 − ξ 2)2

∫ 1

0

dw

w2

s(w)

(1 − w4)2

sin(wk0r)

w
. (77)

The last formula evidently shows that the function rU(r) has minima at k0r = (2ν − 1)π and
maxima at k0r = 2νπ, where ν are positive integers. Thus the effective potential U(r) is a
quasiperiodic function of r with the period λ ≈ 2π/k0. The effective potential U(r) has the
following asymptotic behavior:

U(r) = 1

r

{
1 − ak0r + bk3

0r
3}, k0r � 1, (78)

where a and b are constants calculable from (77), and

U(r) = 1

r

{
1 − 1

(1 − ξ 2)2

2

π
Si(k0r)

}
, k0r 
 1. (79)

Here Si(x) denotes the ordinary sinus integral function

Si(x) =
∫ x

0

dw

w
sin w.

The effective potential U(r) is the superposition of two terms

U(r) = 1

r
+

1

(1 − ξ 2)2
ϕ(r), (80)

where the potential

ϕ(r) = − 1

2π2r

∫ 1

0

dw

w2

s(w)

(1 − w4)2

sin(wk0r)

w
(81)

represents the modification of the Coulomb potential 1/r due to the phonon interactions with
electric charges. The plot of ϕ(r)/k0 as the function of the variable k0r, for the f.c.c. lattice,
is shown in figure 2 to be compared with the Coulomb potential 1/(k0r).

It should be noted that the effective potential (76) or (81) has formally the similar form as
the interionic pseudopotential introduced by Cochran [22] as a useful device for calculations
of elastic properties of simple metals [23].
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After the demonstration of properties of the effective interaction potential U(r) between
electric charges on the explicit example we pass again to general considerations. By having
derived the general relationships (72) between U(r) and the spectrum ωk,0 of the longitudinal
phonons one can reconstruct U(r) from experimental data on a quasiphenomenological basis.
The phonon spectrum ωk,0 can be easily extracted from experimentally observed densities
of phonon states. The main features of the densities of phonon states almost of all metals
[24, 25] are two peaks. The first peak is referred as to the transverse peak and the second peak
as to the longitudinal peak. The transverse peak is situated approximately in the middle and
the longitudinal peak is approximately at the end of the phonon spectrum. By extrapolating
ωk,λ from given experimental data one can construct the effective Hamiltonian in the form

Heff =
∑

σ

∫
d3xΨ+

σ (x)

[
− h̄2

2m

 − μ

]
Ψσ (x) +

1

2

∫
d3x d3x′U(x − x′) :ρ(x)ρ(x′) :

+
∑′

k,λ

h̄ωk,λ

(
c+

k′,λck,λ +
1

2

)
(82)

with the corresponding phonon spectra ωk,λ and the quasiperiodic effective potential U(r)

between electric charges for each monatomic crystalline solid.
With the calculated U(r) one can do the Hartree–Fock calculations to determine the energy

band structure ε̃ν,σ (k) of single electron states (ν, σ,k) in the Hartree–Fock approximation.
Here ν enumerates the energy bands, σ denotes the spin and k is the wave number of the
electron. ε̃ν,σ (k) is a quasiperiodic function of the variable k with the period of the lattice
vectors of the inverse lattice. By this process one can construct the effective Hamiltonian Heff

for each individual crystalline solid with one atom per the primitive cell in the form

Heff =
∑′

ν,σ,k

[ε̃ν,σ (k) − μ]a+
ν,σ,kaν,σ,k +

∑′

k,λ

h̄ωk,λ

(
c+

k,λck,λ +
1

2

)
. (83)

Both forms (82) and (83) of Heff show that the electron and phonon subsystems are formally
statistically independent. However, the influence of the phonons on the electrons is completely
incorporated in the energy spectrum ε̃ν,σ (k) of the single electron states. The energy spectrum
ε̃ν,σ (k) is, of course, a nontrivial function of the parameters ξ and k0. It should be noted that
in the Hartree–Fock approximation one ignores a possibility to have the crystalline solid in
the superconducting state.

The effective Hamiltonian (83) is formally similar to the Hamiltonian (1) discussed in
section 1. The difference between Hamiltonians (83) and (1) consists mainly in the different
origins of the electron energy spectra ε̃ν,σ (k) and εν,σ entering the Hamiltonians (83) and (1),
respectively.

The quantum field theory of crystalline solids presented in this section will be applied
to the f.c.c. crystal lattice in the following section. The obtained theoretical results will be
compared to the experimental data concerning mainly the aluminum, but also almost all metals
having the f.c.c. crystal structure.

4. The applications to the f.c.c. crystal lattice

In this section we consider the phonon spectra (64) and (65), i.e.

ωk,±1 = ωmη
k

k0
, ωk,0 = ωm

[
1 − ζ 2

(
k

k0

)4]
(84)

which resulted from the renormalization procedure adopted in the previous section. The
phonon spectra (84) imply the isotropic sound velocity. There are two candidates which
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approximately satisfy these properties, namely the aluminum and tungsten [2]. The aluminum
has the f.c.c. lattice and tungsten has the b.c.c. lattice. The Brillouin zone B of the f.c.c. lattice
is depicted in figure 1. We choose the f.c.c. lattice, because for analytic calculations, whenever
it is permitted, we can replace B by the ball of the radius k0 as a good approximation. That
is why our theoretical results should be compared to the experimental data concerning mainly
the aluminum.

We first analyze the consequences coming out from the renormalization group
equation (62). The grand canonical potential �(y, z, ξ) of the crystalline solid is the sum

�(y, z, ξ) = �c(z, ξ) + F (y, z, ξ), (85)

where �c(z, ξ) is the grand canonical potential of the electrons and localized nuclei. F (y, z, ξ)

is, in fact , the Helmholtz free energy of the phonons which is explicitly and exactly known in
the form

F (y, z, ξ) = kBT
∑′

k,λ

ln

[
2 sinh

βh̄ωk,λ

2

]
. (86)

The explicit calculation of �c(z, ξ) is, of course, a complicated problem, it cannot be solved
exactly and we do not calculate it perturbatively in this paper. The renormalization group
equation

y
∂F

∂y
+ z

∂F

∂z
+ ξ

∂F

∂ξ
+ z

∂�c

∂z
+ ξ

∂�c

∂ξ
= 0 (87)

provides us one solution for y and z even without the explicit knowledge of �c(z, ξ). We
satisfy (87) by requiring the validity of the following equations:

y
∂F

∂y
+ z

∂F

∂z
= 0 (88)

and

ξ
∂F

∂ξ
+ z

∂�c

∂z
+ ξ

∂�c

∂ξ
= 0. (89)

The solution to (88), which maximizes D given by (70), determines the numerical values y

and z. Then the solution to equation (89) determines ξ for given values of y and z obtained
from equation (88).

By employing formula (86) in (88) we get the equation

∑′

k

{
ωk,±1 coth

(
1

2
βh̄ωk,±1

)
− ωmζ 2

(
k

k0

)4

coth

(
1

2
βh̄ωk,0

)}
= 0. (90)

We analyze its solution in analytic forms in the asymptotic regions βh̄ωm 
 1, and βh̄ωm � 1,

i.e., at low and high temperatures respectively, by replacing the Brillouin zone B by the ball
of the radius k0. For βh̄ωm → ∞ equation (90) gets the form

1
4 η − 1

7 ζ 2 = 0.

Its solution which maximizes D given by (70) is

ζ 2 = 1, η = 4
7

.= 0.571 43 . . . , βh̄ωm 
 1 (91)

For βh̄ωm → 0 equation (90) reduces to the form

2

3
− 1

2ζ 3/2

[
1

2
ln

1 + ζ

1 − ζ
− arctan

√
ζ

]
+

1

3

(
h̄ωm

kBT

)2[1

5
η2 − ζ 2

(
1

7
− ζ 2

11

)]
= 0.
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Its numerical solution is

ζ
.= 0.967 08 . . . η

.= 0.520 05 . . . , βh̄ωm � 1. (92)

From the solutions (91) and (92) one sees that the parameters η and ζ are almost temperature
independent in the whole temperature interval.

We next calculate the density of phonon states gω,λ according to formula (66). The size
area S(k) for the f.c.c. crystal lattice is given by the formulae

S(k) = 4πk2, k ∈ I1 (93a)

S(k) = −12πk2 + 16π

√
3

5
k0k, k ∈ I2 (93b)

S(k) = −24πk2 +
8√
5

π(3 + 2
√

3)k0k k ∈ I3 (93c)

S(k) = 24k

∫ z+

z−
dz arcsin

[(√
9
5 k0 − z

)2

k2 − z2
− 1

]
, k ∈ I4, (93d)

where

I1 = 〈
0,

√
3
5 k0

〉
, I2 = 〈√

3
5 k0,

2√
5

k0
〉
,

I3 = 〈
2√
5

k0,
3√
10

k0
〉
, I4 = 〈

3√
10

k0, k0
〉

and

z+ =
√

4

5
k0, z− = 3

2
√

5
k0 +

√
1

2
k2 − 9

20
k2

0 .

The integral in (93d) can be exactly calculated. However the exact result is given by a long
formula. In order to save the space and for the practical calculations we use for it the Taylor
series

S(k) = 10
√

5k0k

{
3

[
1 −

(
k

k0

)2]2

+ 20

[
1 −

(
k

k0

)2]3}
, k ∈ I4 (94)

restricted to the first two nonvanishing terms. The approximation (94) agrees with the exact
result with the accuracy of the order 10−2. Note that the size area S(k) of the sphere with the
radius k which is inside of the Brillouin zone B of the f.c.c. lattice can be indeed expressed as
S(k) = k2

0s(k/k0) and has the properties exploited in relations (76)–(79).
The densities of phonon states gω,λ for η and ζ given by relations (91) have the following

expressions:

gω,±1 = V

2π2

k3
0

ωm

{
x2

η3
θ

(√
3

5
η − x

)
+

[
4

√
3

5

x

η2
− 3

x2

η3

]
θ

(
2√
5

η − x

)
θ

(
x −

√
3

5
η

)

+

[
2√
5

(3 + 2
√

3)
x

η2
− 6

x2

η3

]
θ

(
3√
10

η − x

)
θ

(
x − 2√

5
η

)

+
5
√

5

2π

x

η2

(
1 − x2

η2

)2[
3 + 20

(
1 − x2

η2

)]
θ(η − x)θ

(
x − 3√

10
η

)}

≡ V

2π2

k3
0

ωm

1

2
gtr(x), (95a)
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Figure 3. The plot of g(x) (solid line) compared to the density of the phonon states of the aluminum
which is reproduced from [1] (dots).

gω,0 = V

2π2

k3
0

ωm

{
5
√

5

8π

(1 − √
1 − x)2

√
1 − x

[3 + 20(1 − √
1 − x)]θ

(
1 −

(
9

10

)2

− x

)

+

[
1

2
√

5

3 + 2
√

3√
1 − x

− 3

2

1

(1 − x)1/4

]
θ

(
x − 1 +

(
9

10

)2 )
θ

(
1 −

(
4

5

)2

− x

)

+

[√
3

5

1√
1 − x

− 3

4

1

(1 − x)1/4

]
θ

(
x − 1 +

(
4

5

)2 )
θ

(
1 −

(
3

5

)2

− x

)

+
1

4

1

(1 − x)1/4
θ

(
x − 1 +

(
3

5

)2)
θ(1 − x)

}
≡ V

2π2

k3
0

ωm

gl, x = ω

ωm

.

(95b)

The total density of the phonon states is the sum

gω = 2gω,±1 + gω,0 ≡ V

2π2

k3
0

ωm

[gtr(x) + gl(x)] ≡ V

2π2

k3
0

ωm

g(x), x = ω

ωm

, (96)

by which we have defined the dimensionless density g(x) of the phonon states. The density
g(x) satisfies the relation∫ 1

0
g(x) dx = 6π2

k3
0

N

V
. (97)

The value of k0 for the f.c.c. lattice is given by

k3
0 = π3 5

√
5

4

N

V
(98)

and differs a little bit from the Debye wave number kD. Their ratio is

k0

kD

=
(

5
√

5

24
π

)1/3
.= 1.135.

The plot of g(x) is shown in figure 3 and compared to the density of the phonon states of the
aluminum which is reproduced from [1].

It is very important to note that the densities of the phonon states (95) for both gω,±1 and
gω,0 have the same threshold behaviors for ω � ωm, i.e. for x � 1,
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gω,±1 = V

2π2

k3
0

ωm

x2

η3
, (99a)

gω,0 = V

2π2

k3
0

ωm

15
√

5

32π
x2, x � 1. (99b)

Thus, the density gω,0 for ω � ωm imitates the situation as if the spectrum of the longitudinal
phonons had the form

ωk,0 = ωm�
k

k0
≡ vlk, k � k0 (100)

where

� =
(

32π

15
√

5

)1/3
.= 1.44.

The spectrum (100) corresponds to the velocity vl = ωm�/k0 of the sound due to the
longitudinal phonons. Thus we get the ratio vl/vtr, between the velocities of the longitudinal
and transverse waves given by the universal number for the f.c.c. lattice

vl

vtr
= 7

4

(
32π

15
√

5

)1/3
.= 2.52 (101)

which is approximately satisfied for almost all metals [2].
The Debye density of phonon states and the Debye frequency ωD are defined in all text

books by the relations

g(ω) = V

2π2

(
2

v3
tr

+
1

v3
l

)
ω2θ(ωD − ω) ≡ V

2π2

3

v3
ω2θ(ωD − ω), (102a)

∫ ωD

0
g(ω) dω = 3N (102b)

irrespectively of genuine forms of densities of phonon states. The definition (102) and
equations (84) and (100) give us the relation between ωm and ωD in the form

18π2

k3
0

N

V
=

[
2

(
7

4

)3

+
15

√
5

32π

](
ωD

ωm

)3

, (103)

which has the solution
ωD

ωm

.= 0.570 28.

We next show the explicit form of relation (89) to convince ourselves that it can be satisfied.
By employing formulae (72)–(73) and (84) and (89) for βh̄ωp 
 1 we derive the following
equation:

−8π

V

∑′

k

ω3
p

k2ω3
k,0

[
1 − ωk,0

ωp

] ∫
d3x eik·(x−x′)〈:ρ(x)ρ(x′) :〉 − Nh̄ωpξ 2

(
3

4
η + 1

)
= 0,

(104)

where 〈:ρ(x)ρ(x′) :〉 denotes the statistical average value of :ρ(x)ρ(x′) : with the Hamiltonian
(74). For the electrically neutral crystalline solid

〈:ρ(x)ρ(x′) :〉 = e2
∑
σ,σ ′

{〈
Ψ+

σ (x)Ψ+
σ ′(x′)

〉〈Ψσ ′(x′)Ψσ (x)〉

− 〈
Ψ+

σ (x)Ψσ ′(x′)
〉〈
Ψ+

σ ′(x′)Ψσ (x)
〉}

,
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where the statistical average values 〈Ψ+
σ (x)Ψ+

σ ′(x′)〉 and 〈Ψ+
σ (x)Ψσ ′(x′)〉 are, of course,

functions of ξ, ζ and k0 and are unknown for us at present. In order to show at least that (104)
can be satisfied we consider the system for kBT � h̄ωp, but above the critical temperature of
the superconducting state. In this case 〈Ψ+

σ (x)Ψ+
σ ′(x′)〉 = 0. Now we can use the effective

Hamiltonian (80) in the Hartree–Fock approximation (83) to get the relations

F(k) ≡ −
∫

d3k d3k′ eik·(x−x′)〈:ρ(x)ρ(x′) :〉

=
∑
σ,σ ′

∫
d3x d3x′ eik·(x−x′)∣∣〈Ψ+

σ (x)Ψσ ′(x′)
〉∣∣2

= e2

V

∑
ν,ν ′,σ

∑′

q,q′

〈
a+

ν,σ,qaν,σ,q

〉〈
a+

ν ′,σ,q′aν ′,σ,q′
〉

×
∫

d3x d3x′ϕ∗
ν,q(x)ϕν,q(x

′)ϕ∗
ν ′,q′(x′)ϕν ′,q′(x) eik·(x−x′) (105)

where ϕν,q(x) are the Hartree–Fock single electron wavefunction in the electron states
(ν, q).F (k) > 0. Combining (105) and (104) we get the equation

4π

V

∑′

k

ω3
p

k2ω3
k,0

(
1 − ωk,0

ωp

)
F(k) − Nh̄ωpξ 2

(
3

4
η + 1

)
= 0 (106)

which is identically satisfied for ζ = 0, ξ = 0 irrespectively of the function F(k). It admits the
solution in the vicinity of this point and one can believe that this solution can be extrapolated
even to ζ = 1 and to the corresponding ξ �= 0. In what follows, we consider ξ as a free
parameter which determines the maximal frequency ωm of the phonon spectrum according to
relation (63).

Now we calculate the thermodynamic functions of the phonon subsystem. The Helmholtz
free energy (86) is expressed in the form

F (T , V,N) = kBT
V

2π2
k3

0

∫ 1

0
dx g(x) ln

[
2 sinh

βh̄ωmx

2

]
. (107)

Its volume dependence comes only from ωm = (1−ξ 2)ωp. From (107) one derives the energy

E(T , V,N) = h̄ωm

2

V k3
0

2π2

∫ 1

0
dx xg(x) coth

(
1

2
βh̄ωmx

)
≡ 3Nh̄ωmϕ(βh̄ωm), (108)

and the equation of state

P = −
(

∂F

∂V

)
T ,N

= 1

2

E

V
. (109)

It is important to note that exactly as in the approximative Debye theory all thermodynamic
functions (107)–(109) involve only the one transcendental function

ϕ(βh̄ωm) = 1

12π2

V

N
k3

0

∫ 1

0
dx g(x) coth

(
1

2
βh̄ωmx

)
(110)

of the single variable βh̄ωm. The limiting values of ϕ(βh̄ωm) easily outline the limiting
behavior of the energy (108) at low and high temperatures.

At low temperatures, βh̄ωm 
 1, the limiting behavior of ϕ(βh̄ωm) is entirely determined
by the threshold behavior of g(x) as given by relations (99). In this case the Debye frequency
ωD is defined from the elastic properties of the solid as is given by relation (103) and is
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absolutely insensitive on details of the density g(x) of the phonon states far above the threshold.
By employing relations (99)–(110) we get the result

ϕ(βh̄ωm) = ϕ0 +
π4

5

(
ωm

ωD

)3(
kBT

h̄ωm

)4

, βh̄ωm 
 1, (111)

where

ϕ0 = π5
√

5

48

∫ 1

0
dx xg(x) = 1

4
.

The energy of the phonons gets the form

E = 3

4
Nh̄ωm +

3

5
π4NkBT

(
kBT

h̄ωD

)3

and gives the heat capacity

cV = 12π4

5
NkB

(
kBT

h̄ωD

)3

, βh̄ωD 
 1, (112)

which is the same result as in the approximative Debye theory.
At high temperatures, βh̄ωD � 1, the function (110) gets the form

ϕ(βh̄ωm) = kBT

h̄ωm

+
1

72π2

V

N
k3

0
h̄ωm

kBT

∫ 1

0
dx x2g(x), βh̄ωD � 1. (113)

This formula does not have the same standing as the low temperature one (111) because it is
very sensitive on the details of the phonon density of states g(x) in the whole spectrum interval
ω ∈ (0, ωm). By employing (113) in (108) we express the energy of the phonons in the form

E = 3NkBT

{
1 +

α2

20

(
h̄ωD

kBT

)2}
, βh̄ωm � 1, (114)

where

α2 = 5

18π2

V

N
k3

0

(
ωm

ωD

)2 ∫ 1

0
dx x2g(x). (115)

It is almost an unbelievable miracle that the numerical value of the constant α2 is close to 1,
namely α2 = 1.5 for the parameters ζ and η typical for βh̄ωm 
 1 and given by relation (91),
and α2 .= 1.4 for these parameters typical for βh̄ωm � 1 and given by relation (92). If the
Brillouin zone B of the f.c.c. lattice is approximated by the ball of the radius kD then α2 .= 1.

From (114) we get the heat capacity

cV = 3NkB

{
1 − α2

20

(
h̄ωD

kBT

)2}
, βh̄ωD � 1 (116)

which for α = 1 is exactly the same as in the approximative Debye theory. From relations
(112) and (116) we see that the Debye temperature θ = h̄ωD/kB is a slightly increasing
function of the temperature T which is perfectly consistent with experimental observations
[2].

Relation (115), by which we have defined the parameter α, relates the second moment of
the density of the phonon states g(x) to the numbers specifying its threshold behavior, namely,

g(x) = 18π2

k3
0

N

V

(
ωm

ωD

)3

x2; x � 1. (117)

If the parameter α is close to 1 then the function

D(βh̄ωD) ≡ 1
3 βh̄ωmϕ(βh̄ωm)
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can be interpolated with a sufficient accuracy by the universal transcendental function

D

(
θ

T

)
= 1

2

(
T

θ

)3 ∫ θ/T

0
dx x3 coth

x

2
(118)

which is identical with a function appearing in the approximative Debye theory. The function
(118) should not be confused with the function

D(y) = 3

y3

∫ y

0

x3 dx

ex − 1
(119)

which is called the Debye function. With the function D(θ/T ) we get the expression for the
energy E of the phonon subsystem in the form

E = 9NkBT D(θ/T ) (120)

which gives the heat capacities of solids exactly the same as in the approximative Debye theory
for all temperatures.

Now we turn to a general discussion. The Helmhotz free energy of a phonon subsystem
has always the general form (107) with a certain density g(x) of phonon states corresponding
to a given monatomic solid. If the density g(x) has the threshold behavior as given by (117)
and the parameter α defined by relation (115) is closed to 1 then the energy of the phonon
subsystem can be expressed with a sufficient accuracy by the universal function (120) exactly
in the same way as in the approximative Debye theory. Thus from the microscopic theory we
have found the reason for which the Debye theory of solid heat capacities is so remarkable
that it yields heat capacities of monatomic solids by the simple universal function D(θ/T )

expressed by relation (118). The Debye theory of solid heat capacities is remarkably well
verified for actual monatomic solids which have various densities of phonon states with the
Debye temperatures θ varying widely and even for the temperatures in the broad temperature
interval T ∈ (0, 2θ).

The presented application of the theory to the f.c.c. crystal lattice contains at present the
only one undetermined parameter ξ or equivalently the value of the maximal frequency ωm in
the spectrum of the phonons. In what follows we fix ωm from the elastic data, namely, from
the velocity vtr of the transversal sound waves vtr = ηωm/k0 = 4ωm/(7k0). Once this scale
adjustment is made then we can calculate the rest of the parameters which are obtained from
the elastic, spectroscopic and thermal measurements. We use the experimental values for vtr

from [2]. The experimental and theoretical values of the parameters ωm, θ and vl are collected
in table 1. The agreement between the theoretical values and experimental data seems to be
satisfactory despite the fact that the presented theory ignores the anisotropy in the velocities
of the sound waves.

5. Discussion and conclusion

We have demonstrated the importance of the existence of unitarily inequivalent representations
of the canonical commutation relations of field operators in the presented quantum field
theory of crystalline solids. By the chosen renormalization procedure we have, in fact,
selected one class out of infinitely many classes of unitarily inequivalent representations of
the commutator ring of the phonon field operators. The unitarily inequivalent representations
within the selected class are enumerated by the three parameters η, ζ and ξ which satisfy the
renormalization group equation.

Any unitarily inequivalent representation from the selected class represents an exact
solution to the many-body problem governed by the given Hamiltonian. The particular
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Table 1. Values of maximal frequencies ωm of phonons, Debye temperatures θ and velocities vl
of longitudinal waves.

ωm (1013s−1) θ (K) vl (ms−1)
k0 ωp vtr (ms−1)

Metal (1010 m−1) (1014 s−1) Exp.a Exp. Theory Exp.a Theory Exp.a Theory

Al 1.734 8.093 3080
10.3b

6.2c
9.346 418 407 6260 7761

Ag 1,718 14.431 1590
3.2d

3.5e
4.780 225 208 3600 4006

Au 1.722 18.007 1200
3.0d

3.2e
3.616 165 158 3240 3024

Cu 1.940 13.917 2260
4.7d

5.0e
7.672 339 334 4700 5695

Fe 1.946 13.374 3230 7.6f 11.002 467 479 5850 8139
Ni 1.993 14.544 2960 7.0g 10.323 456 450 5630 7459
Pb 1.421 13.659 700 1.7b 1.740 95 76 2160 1764
Pt 1.790 18.928 1670 4.5h 5.231 229 227 3960 4208

The experimental data are taken from the following references:, a [2]., b [24]., c [23]., d [26]., e [25].,
f [27]., g [28]., h [29].

unitarily inequivalent representation, selected out of infinitely many of them within the given
class, is that one which provides the maximal Boltzmann entropy of phonons. Then this
representation determines the phonon spectra, the densities of phonon states and the effective
interaction potential between electric charges by the explicit formulae.

Thus the presented quantum field theory of crystalline solids contains one crucial point
concerning the selection of the counterterms in the renormalization procedure. For the
renormalization of the quantum field theory of crystalline solids we do not have such general
physical principle as e.g. the principle of the correspondence in the quantum electrodynamics
[17, 18]. In the quantum electrodynamics, the principle of the correspondence dictates
the form of counterterms in the renormalization in such a way that results of the quantum
electrodynamics must reduce to the results of the classical electrodynamics at low frequencies
of photons. The classical theory of crystalline solids based only on the Coulomb interaction
between electric charges cannot exist and therefore the renormalization of the quantum field
theory of crystalline solids lacks the principle of the correspondence. One may intuitively
believe that the good guide for the selection of the renormalization can be the approximative
Debye theory, because its remarkable agreement with experimental data cannot stand a
theoretical tampering at low frequencies of phonons. Even if a selected renormalization
respects properties of the approximative Debye theory and satisfies requirements of an
extremely fine tuning for providing finite results of all physical quantities, its most general
form is not uniquely specified from the very beginning. However, once concrete counterterms
are chosen in explicit forms, as in section 3, then they give spectra of phonons and densities
of phonon states explicitly as certain functions of the wave numbers. Our experience from
the search of the renormalization presented in section 3 has convinced us that one can always
construct such counterterms for the renormalization which can reproduce experimental data
of phonon spectra and densities of phonon states with the accuracy within experimental errors
for each individual monatomic solid. Such an individual renormalization of the quantum field
theory for each distinct crystalline solid represents only a quasiphenomenological theory. From
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this point of view the results of the quantum field theory presented in sections 3 and 4 should
be regarded as results of the quasiphenomenological theory. Even if theoretical results of
the quasiphenomenlogical theory agreed with experimental data exactly within experimental
errors for each monatomic crystalline solid, such a theory could not satisfy us completely
for the following reasons. The quasiphenomenological theory without a universal unifying
principle for its renormalization would be only a useful device how to reproduce experimental
data. It would not have a general approach to arbitrary monatomic solid and, of course, the
elegance required by theoretical physics.

The quasiphenomenological theory presented in sections 3 and 4 owns three general
properties which are present in every chosen renormalisation.

First, the subsystems of the electrons and phonos are formally statistically independent
and governed by the Hamiltonian (82) with the phonon frequencies ωk,λ which are to be
determined later on.

Second, all influences of phonons on electric charges are exactly and completely
incorporated into the effective interaction potential U(r) between electric charges.

Third, the effective potential U(r) is the explicitly known functional of the longitudinal
phonon frequencies ωk,0 as given by relations (72) and (73).

These three general features are, indeed, the means for the formulation of the general
quantum field theory of crystalline solids.

Counterterms φ(b∗, b) for the renormalization determining the phonon spectra ωk,λ are
not chosen explicitly as, e.g. by relation (43), but they are general bilinear functionals of the
phonon fields. Then the counterterms give the phonon spectra

ωk,±1 = [(ωk + αk,±1)βk,±01]1/2, (121a)

ωk,0 =
[
(ωk + αk,0)

(
ω2

p

ωk
+ βk,0

)]1/2

(121b)

only in terms of general unspecified functions αk,λ and βk,λ. In this general renormalization the
grand canonical potential � of a given crystalline solid becomes a functional of the parameters
αk,λ and βk,λ i.e.

� = �(T , V,μ; {αk,λ, βk,λ}),
which must satisfy the following renormalization group equation:∑′

k,λ

(
αk,λ

δ�

δαk,λ

+ βk,λ

δ�

δβk,λ

)
= 0. (122)

Any solution to the renormalization group equation represents an exact solution of the quantum
field theory governed by the Hamiltonian (82). Now we can formulate the universal principle
for the determination of the phonon frequencies ωk,λ or equivalently for the determination
of the counterterms in the renormalization. The universal principle is the second law of
thermodynamics which requires the grand-canonical potential �, at given values of the
thermodynamical variables T , V and μ, to be minimal with respect to all free parameters
on which it is dependent. These free parameters are functions αk,λ and βk,λ of the wave
numbers k.

Thus we get the equation

(δ�)T,V,μ = 0 (123)

which represents the condition for the minimum of � with respect to the parameters αk,λ and
βk,λ at the presence of the constraint (122). Equations (121)–(123) with the Hamiltonian (82)
define the quantum field theory of crystalline solids with the renormalization.
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From the process of the derivation of the last equations it is obvious why we cannot
incorporate universal counterterms for the renormalization into the original action (37) for all
crystalline solids as it is, e.g., in the case of the quantum electrodynamics. The main reasons
are that the original action depends on the parameters like Ze and M which are different for
different atoms and that solids can have different crystal structures which determine forms of
grand canonical potentials as functionals of αk,λ and βk,λ. From this viewpoint the quantum
field theory of crystalline solids with the renormalization is much more involved than the
quantum electrodynamics.
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